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Abstract—Approximate methods are developed to calculate the rate of heat generation with respect to
time when current is suddenly discharged from part of a superconducting wire embedded in a copper
sheath. The temperature field in the copper with respect to time is then found in the absence of any cooling
from liquid helium surrounding the superconducting composite. Thus it is determined if the temperature
at the end of the section of superconductor, from which the current has been excluded, rises above a critical
temperature which will cause the region to propagate.

Unsteady-state film boiling of liquid helium is separately considered to determine if it can make a signifi-
cant contribution to modifying the temperature field within the superconducting composite. The film
boiling theory is put in a form readily applicable to liquids other than helium.

NOMENCLATURE

volume of copper per unit super-
conductor surface area;

constant defined by equation (34);
specific heat of helium vapour;
specific heat of helium vapour at
Yos

specific heat of copper;

functions of time defined by equa-
tions (22-25};

steady- and unsteady-state heat-
transfer coefficients respectively;
magnetic flux;

current in superconductor;
current per unit perimeter of super-
conductor;

current density;

thermal conductivity of helium
vapour;

thermal conductivity of helium
vapour at yg;

half length of superconductor from
which current is excluded ;

latent heat of vaporization;
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r,

Tos

R,

L

Ligs Lis
tRss

us

mass of copper per unit super-
conductor surface area;

heat flux from surface adjacent to
helium;

heat;

heat due to current exclusion;

heat release rate into copper per
unit surface area of superconductor
due to current exclusion and during
one-dimensional current diffusion,
radial current diffusion and the
steady state respectively;

radial coordinate;

radius of superconductor wire;
{r/ro);

time;

time at which form of solution
changes. Subscripts indicate direc-
tion of change: 1 for one-dimen-
sional current diffusion, R for radial
current diffusion and S for steady
state;

time period of unsteady-state film
boiling;
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T, temperature;

To. temperature of helium liquid-
vapour interface;

T, temperature of solid surface ad-
jacent to helium;

u, variable defined by equation (32);

v, velocity ;

X, linear coordinate;

Vs variable defined by equation (42);

Yo» value of y at helium liquid—vapour
interface ;

z, dimensionless time defined by equa-
tion (33);

ZyRe zatt g

Greek symbols

o, thermal diffusivity of copper;

o, thermal diffusivity of the super-
conductor;

s helium vapour density;

Yos helium vapour density at y,;

Vs helium liquid density;

1, (T/Ty)?;

0. temperature elevation;

P, electrical resistivity;

T, time ;

. defined by equation (43);
[.].1.], integrals defined by equations (29),
€1 RS (30), (31), (40).

1. INTRODUCTION

IT 15 well known that the electrical charac-
teristics of a single straight superconducting
wire are more stable than one wound in a coil.
The reasons need not concern this paper but
the effect of instability is that magnetic flux is
locally excluded from the wire, with a conse-
quent generation of heat, which is sufficient
to raise the temperature above a critical value
at which the superconductor acquires an elec-
trical resistance in the usual sense. The ohmic
heating of the wire can then be sufficient to
maintain the elevated temperature in competi-
tion with cooling by boiling liquid helium at the
wire surface and even to cause the region of
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normal resistance to propagate, (see for example
Whetstone and Roos [1]).

A practical method of maintaining the wire
generally in a superconducting state to enable
it to carry the very high currents of which it is
theoretically capable is to embed the super-
conducting wire in copper and so provide low
resistance shunt. This method is known to work
but upon close examination the reasons are
not so clear.

The diffusivity of current density normal to
the direction of current flow is directly pro-
portional to the electrical resistivity. Thus,
since the resistivity of the superconductor aboe
the critical temperature is large, the current is
excluded from the superconductor in a negligibly
small time—typically 10™8 s. The current will,
however, diffuse rather slowly through the
copper, taking more like 1073 s, and the ohmic
resistance losses, before the copper shunt can
take full effect, will be large.

The magnitude of the current diffusivity in
copper is 25 cm?/s while that for thermal
diffusivity is 5000 cm?/s. Therefore any heat
generated will spread rapidly over the copper
cross-section which can be considered iso-
thermal. The heat then has two paths to follow
which are indicated in Fig. 1:

(1) 1t can pass from the copper into surrounding
liquid helium or,

(2) Since the magnetic flux will have been
excluded only from a certain length of
superconductor, it can diffuse normal to
the copper cross section to regions where
the colder copper provides a heat sink.

It becomes clear that the initial virtue of the
copper will be to obtain rapid diffusion of heat
and to provide a heat sink rather than to act
as a low resistance shunt. It would be hoped
to design the superconducting composite to
prevent the ends of the length of superconductor
which had reverted to the normal condition
from rising above the critical transition tem-
perature. Then the normal region will not
propagate.
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Heat diffuses
longitudinally
in copper

Heat
superconductor diffu
radially

ot copper surface

FiG. 1. Diagram describing the assumed model of events.

The nature of heat transfer to the liquid
helium will be unsteady-state film boiling.
Nucleate boiling can be discounted in most
practical cases where the helium is under 1 atm
pressure at 42°K and the surface temperature
of the copper will be close to and most likely
above the critical temperature of 52°K. It
will be shown that the unsteady state will last
about 1072 s and so corresponds in magnitude
with the current diffusion period within the
copper.

This preamble has indicated that the various
unsteady-state processes are complicated and
interlocking. Nonetheless it will be shown that
a reasonably accurate assessment of events
can be made by simple desk calculation if heat
transfer to the helium is ignored. This will
assign temperatures to the system and then the
importance of the boiling process can be
judged using a film boiling analysis. Results
of greater accuracy would require numerical
work by a computer.

The model of events that is to be used for
analytical purpose is implicit in the description
given above and is illustrated in Fig. 1. The
details of the model will appear in the assump-
tions to be stated in the later sections. First
expressions will be derived giving rates of heat
released in the copper. Then expressions will
be given describing the diffusion of the heat
through the copper. Finally an unsteady-state
film boiling theory will he developed.
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2. HEAT RELEASE RATE INTO COPPER

2.1. Stored energy of magnetic flux
The stored energy Q, o per unit length of the
cylindrical superconductor of radius r, is

ro H2
QLo =JTrdr (1)

[

where H, the magnetic flux, is
H =27rJ (2)

where r is the radial co-ordinate, and J is the
current density. Hence
I2
=—, 3
(2L0 4 ( )

I is the current in electromagnetic units of say
gt emiss.

2.2. Release of stored energy into copper

The stored energy in the superconductor is
usually a small part (about one fifth) of all the
energy released in the unsteady-state current
diffusion period. It also appears rather slowly
in the copper due to the low thermal diffusivity
of superconductor materials (about 5 cm?/s
compared with 5000 cm?/s for copper) of
practical superconductors. Therefore the follow-
ing assumptions can be made without materially
affecting the calculated copper temperatures,
which are the final result.

It is assumed that the surface temperature
of the superconductor is constant and that the
temperature elevation 6 above the surface
temperature is of the form

AaT
= ) @)

[o]

0 = f(R)exp (—

where o is the thermal diffusivity of the super-
conductor, 7 is time, R =(r/r,) and A is a
constant.

Substitution of equation (4) is the thermal
diffusion equation

%0 16

90,1 ro o0
dR? ' RAR

aar

&)



1058

yields an ordinary differential equation in f
and R with A as a parameter, which has a series
solution for fin terms of R and A. The boundary
conditions are then used to determine 4 = 5-8.
Thus it is found that Q. the rate of heat release
into the copper per unit surface area of super-
conductor is

2:9 580,
Oc =3 Qoexp [— - ’]- (©)

c=—3
nr3 5

2.3. Heat release due to ohmic resistance in copper

When the superconductor reverts to normal, it
is assumed that the current enters the copper
instantanously so that at first it is only present
in a thin skin at the surface of the superconduc-
tor. The initial ohmic resistance of the copper
under this assumption will thus be infinite and
there must be some current sharing but this is
ignored.

At first we can treat the current diffusion
as one-dimensional, i.e. the problem is the
same as for diffusion into a semi-infinite slab.
At a later stage we can ignore the boundary
formed by the surface of the superconductor and
treat a problem in which all the current is
assumed to originate at the axis of symmetry
of an infinite solid. Further, for the purpose at
hand, we can make a change from one solution
to the other at the time where the rates of heat
generation due to the two current distributions
are equal.

A time will also be reached when the heat
generation rate from one or other of the above
solutions equals the rate when the current is
uniformly distributed. This time can be taken
as the end of the unsteady-state current dif-
fusion period.

The equations of one-dimensional (x) and
axisymmetrical diffusion of current density J
are analogous to the thermal diffusion of current

and are
0%J 4m\ 8J
bR Baied Tl 7
ox? < p) ot 7)
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i L1 (am\ o @®)
ort "ror \por
where p is the resistivity.

Equations (7) and (8) are solved, with the
boundary conditions noted above and the
condition that the total quantity of current is

7=l

constant, to give
nx?
exp | —— 9
Hrerp -] o)

pT ot

where [, is the current per unit perimeter of the
superconductor and is not to be confused with
I in equation (3).

The energy dissipation per unit volume is
pJ? and thus the heat release rates Q, for the
one-dimensional solution and Qp for the axi-
symmetric solution are given by

(10)

(11)

(12)
also in the steady state we have

3 p
Qszali

(13)

where a is the copper volume per unit surface
area of superconductor.

It is interesting to note that equation (12) is
independent of the resistivity.

The changeover time from one solution to
another is given by the following equations with
the obvious subscript notation

nri
tg = (14)
1R 2
24
tis = — (15)
nroa
Irs = (16)
p
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As an example consider p = 30 cm?/s, ry =
003 cmand a = 0-15 cm. Then 1z = 45107 %s.

3. LONGITUDINAL DIFFUSION OF
HEAT IN THE COPPER

In this section the diffusion of heat in the
copper parallel to the axis of the superconductor
is to be studied. Several important assumptions
are made.

(a) The system is isothermal normal to the
axis of the superconductor.

(b) The length of the normal superconductor
is 2/ and does not change.

(c) No heat is lost to the helium surrounding
the copper.

(d) The thermal properties of copper are
independent of temperature.

The last assumption is the most serious and
is made so that the thermal diffusion equations
become linear. Different temperature fields can
thus be added to one another and desk computa-
tions are possible. The limitations imposed by
the assumption are indicated by the variation
of thermal diffusivity of a typical copper from
7000 to 3000 cm?/s as the temperature changes
from 42°K to 7°K—a practical range for
consideration. The variation is not so severe
that the magnitudes of temperatures cannot be
calculated using the simplifying assumption
and, of course, the effect of the variation of
thermal properties on the magnitudes can still
be argued qualitatively.

Consider the effect at time ¢ of an increment
of temperature dT added to the length 2I at
the time 7. Carslaw and Jaeger [2] give the
increment of temperature df at a position x
measured along the length of the wire from the
centre of the length of normal superconductor.

do

dT

[erf2[\/oc(t =9

(I + x)
+ eer[\/oc(t — r)]]
(17)

for t = © where a is the thermal diffusivity of
copper.
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Attention will be concentrated on the tem-
perature at the end of the length 2!/ where
9 _y erf !

ar 7 [Jat - 0]

Now equations (6), (11), (12) and (13) for the
heat release rate are of the form

(18)

dQ = F(r)dr (19)
and we have
dT = d—Q (20)
cm

where c,, is the specific heat of copper and m is
the mass of copper per unit surface area of
superconductor.

Thus equation (18) can be integrated

t2

1 !
2cpm'[Ferf [/t = 0] dr

t

0 =

(21)

where F for the various quantities of heat is
given, using the usual subscripts, by the equa-

tions )
2 I .
F.= 9 7o, b exp [_ 582&51] 22)
Fo ro
2p
F1=<\/T)If, (23)
12
FR = F%rﬂ (24)
12
Fs=Et (25)

Taking t,, the initial time, to be zero we can
write, ignoring 8y for the time being

. 272
90=29nl Ip@)j (26)
roc,m \ o
C
172
(5
o c,,m
1
_r(p
o= ()] )

N
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where
= |uexp[~ B(z? — u?)] erf(é)du (29)
& %
”_ a;erf ! du (30)
) JJ(E =) u
1 0
A A 1
= uerf(—du) (31
o Y, u
S 0
where
u =[\/°‘(t_l—_f)] (32)
W l‘”) (33)
6
LN
AIVAIRN
AN
g V\ \\ 5-0575
107! N, \\
o AN
s 23
4
. 3 ~_
¢ ) -{ \
N 92
RIAN
o \\ o~
[ \ \
: \\ 366
2 \‘
\
0735 z 3 5 ) 10 2
, dar
{

FiG. 2. Values of i

B =58 (“—)(i)z (34)
af\r,

Values of j vs. dimensionless time z are shown
C
in Fig. 2 with B as a parameter. | is shown in

1
Fig. 3 and it is seen that it tends to 1-75. This
provides an upper limit to the temperature in
the unsteady-state period.

0 2 4
(Vat

“TC

- o
®
o

F1G. 3. Values of [ and g
1

Figure 3 also shows the value of | and shows
N

that it tends to become linear with respect to
z or that §; tends to vary as the square root of
time when the heat generation rate is constant
in the steady state. Equation (31) has an analyti-
cal solution

z 1 z 1
S

from which we can find that

2 Ep t
(Gs)t—mo - (\—/;)acpm (\/&) (36)

We can also find solutions to equations (29)




UNSTEADY-STATE HEAT GENERATION

and (30) as z tends to zero and thus find the
initial temperature rise

Iz ot
Oc + 01)—0 = P 145 m (2o0{. (37
0

Equations (36) and (37) are valuable for
comparing the initial rapid changes of tempera-
ture with the final slower changes.

3.1. Temperatures during the radial diffusion of
current
During the period when the current diffusion
is approximated by the axisymmetric system
we must find the temperature

BI]B - 91];15 + GR]:lg (38)

where ¢, is the time at which a change is made
from the assumption of plane diffusion to that
of radial diffusion.

The first term of (38) has already been de-
termined. The second term involves evaluating
equation (30) between u = 0 and u = (\/z* —
z3g). Now (/2% — z}p) is usually small and thus
erf (1/u) does not change very much. Therefore
equation (30) can be evaluated in steps assuming
an average value of erf(1/u) for each step.
Usually only two steps and at the most three
are needed for adequate accuracy. Equation
(30), of course, has an analytical solution if
erf (1/u) is set constant.

A similar procedure is used for the third
term of (38) where

0, = nl3ry J.
cm

R

u 1
_[:J‘ R erf(;)du.
R

3.2. An example

Figure 4 gives an example of the results of
calculations using the methods given above.
It shows the temperature in the copper at the
end of the normal length of superconductor
vs. the square root of time for the case where

(39)

(40)
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a = 5r,. The original current density in the
superconductor for the example is 86000 Ajem?,
c,=210"* J/g°K, p =30 cm’/s, a= 5000
cm?/s y (copper density) =85 g/cm® The
temperature rise due to 6, has not been added
since it is small owing to the small value of
a, = 5 cm?/s.
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207,

FiG. 4. Temperature elevation vs. time for a = Sr, and
without heat from current expulsion of helium cooling.

Figure 4 shows that the temperature tends
to reach a plateau but that the plateau gets
eliminated as the length of the normal region
increases. The shape of the curves in the steady-
state region has been judged using equation
(36) as a guide.

4. UNSTEADY-STATE FILM BOILING

Unsteady-state film boiling heat-transfer rates
are to be calculated assuming that the solid
surface has a constant temperature Ty and that
the liquid is at its saturation temperature T;.
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Thus we have a vapour film with a variable
temperature gradient and for which we can
write the one-dimensional thermal conduction
and convection equation

é_T 3 ok éT/dx)
0x 0x

¢, v and k are the specific heat, density and
thermal conductivity of the vapour and are
all temperature dependent. v is vapour velocity
and x is distance from the wall.

Hamill and Bankoff [3] obtained a solution
to equation (41) assuming k was independent
of temperature. Here we will use Hansen’s
[4] transformation which avoids this assump-

tion.
é,x
Co
= d
y [4k0y0t] J” X

(TITo) L T
J Go)e()
Yoko T,
0
where subscript O refers to properties at the
temperature T,. Thus equation (41) becomes

2
[ Coky:lgg + 2y£1é =
ckoyo dy dy

Equation (44) can be numerically integrated
from y,, the position of the liquid—vapour
interface, given a starting value for (d¢/dy). We
use the condition that the rate of increase of the
mass of vapour times the latent heat of vaporiza-

tion L equals the heat conducted to the liquid—
vapour interface and derive

(52
dy /o

coTo
Further we find the value of (d¢/dy) at the

solid surface to be
dd)) B qs[ 4t :r
dy ), To [ Yocoko

where g, is the heat flux from the solid surface.

oT
cy~67 + cyv =0. (41)

(42)

¢ = (43)

0. (44)

(45)

(46)
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Thus the numerical integration will give (d¢/dy),
and ¢, and hence equations (46) and (43) will
give the heat flux from the surface and the
temperature difference between the surface and
the vapourizing liquid.

Equation (44) contains (ky/c) as an arbitrary
function of ¢. For many purposes and for the
particular purpose at hand we can assume that
¢ is independent of temperature and that

06 -G

Then
¢ =TT} — 1] =4[n ~ 1] (48)
in which 7 is defined.
Equation (44) becomes
d*y dn
R JRELI
i) + 2yy a0 0 (49)

51—

(To/To)
F1G. 5. Unsteady-state film boiling.



UNSTEADY-STATE HEAT GENERATION

which has been integrated for the boundary
conditions

y=Yo» MNo=1 and

dr) _ 3Ly
dyo_ 2¢oTy

The results are shown in Fig. 5 in terms of the
dimensionless heat flux

qs( ! >%vs <Ts>with< L)
Ty \7oCoko . 1, ¢oTo

as a parameter.

(50)

4.1. Application to helium at one atmosphere

(L/coT,) for helium at 1 atm is 0-965. The
following table shows calculated unsteady-state
heat-transfer coefficients.

Table 1. Heat-transfer coefficients for helium at 42°K

T, h,t* hy t,
4282 11751072 616 101 3631074
4536 58881073 2:48 107! 565107
499 39351073 1-44 107! 745107
570 29571073 982107 9051074
673 23801073 7271072 1071073
825 1994 10~3 5851072 1-16 1073
10-49 17111073 4751072 1:30 1073
13-88 1:506 1073 4051072 1381073
19-03 13391073 3541072 144 1073
27-30 1203 1073 3171072 14451073
6586 9-857107* 2621072 1421073
2136 8-070 10~# 2251072 1251073
T, = surface temperature [°K]

unsteady state coefficient [W/cm? °K]
steady state coefficient [ W/cm? °K]
time [s]

t, = period of time for unsteady state [s]

=
=

-~

W non

The steady-state heat transfer-coefficient was
calculated from the formula of Frederking, Wu
and Clement [S] which fits available experi-
mental information.

RO LT - T
[gkczv(n - v)] _03[ dT, — Tp) ] Gh

where vapour properties are those at the
arithmetic mean film temperature, p; is the
liquid density and g is the gravitational con-
stant.
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The time period of the unsteady-state ¢, is
equal to the time at which h, = hs. It is seen
to be about 1073 s.

4.2. Application to cooling of the superconductor
composite

It was stated in the introduction that the
temperature field in the copper could not be
calculated by simple means if boiling helium
was included. This is partly because the copper
temperature and thus the helium cooling varies
with position along the composite as well as
with time. No simple heat quantity, such as
considered with respect to ohmic resistance
heating, can be found which will give a tempera-
ture field to be subtracted from those already
calculated.

Nonetheless the temperature elevations, such
as shown in Fig. 4, can be used, in conjunction
with the heat-transfer coefficients given in the
table of the last section, to decide if the boiling
heat-transfer process will remove a considerable
or insignificant part of the heat generated in
the superconductor composite. It is therefore
possible to decide if the copper or the helium
or both together should be considered as the
immediate heat sink. In the long run of course
the helium must remove all the heat.

In the composites that the author has studied
it appears that, for values of (2I) of about five
times the diameter of the composite, both the
copper and the helium are valuable as sinks.
The answer will vary, however, with the design
of the coil.
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Résumé—On expose des méthodes approchées pour calculer la vitesse de production de chaleur en
fonction du temps lorsque le courant se décharge brusquement d’une partie d’un fil supraconducteur
enveloppé dans une gaine en cuivre. On obtient alors le champ de températures dans le cuivre en fonction
du temps et en I'absence de refroidissement par de I’hélium liquid entourant ’ensemble supraconducteur.
Ainsi, on détermine si la température & I'extrémité de la section du supraconducteur, a partir duquel le
courant a été expulsé augmente au-dessus d’une température critique qui provoquera la propagation
de cette région.

L’ébulltion par film de I’hélium liquide en régime instationnaire est considérée d’une fagcon séparée
pour déterminer si cela peut contribuer sensiblement & la modification du champ de températures dans
I’ensemble supraconducteur. La théorie de I’ébullition par film est mise sous une forme applicable

directement a des liquides autres que I’hélium.

Zusammenfassung—Zur Berechnung der zeitabhidngigen Warmeerzeugung wurden Naherungsmethoden
entwickelt fir den Fall, dass einem Teil eines supraleitenden Drahtes pldtzlich Strom entzogen wird.
Der Draht ist von einer Kupferhiille umgeben. Das Temperaturfeld im Kupfer ldsst sich ermitteln; es
erfolgt dabei keine Kiihlung des supraleitenden Korpers durch fliissiges Helium. Damit wird bestimmt,
ob die Temperatur am Ende des Bereiches, dem der Strom entzogen wurde iiber eine kritische Temperatur
ansteigt, was eine Ausdehnung des Bereiches zur Folge hitte.

In einer getrennten Betrachtung wurde gepriift, ob instationires Filmsieden eine deuttiche Anderung
das Temperaturfeldes im supraleitenden Kérper bewirken kann. Die Theorie des Filmsiedens ist in eine

Form gebracht, die eine Anwendung auf andere Fliissigkeiten, ausser Helium, zuldsst.

Annoramus—PaspaGotanbl mpUOIMKEHHEIE METORH pacyeTa MW3MEHEHMA €O BpEMeHeM
CKOPOCTH TeIJIOBLYIeNIEHNA NPH MTHOBEHHOM OTKIIIOYEeHHM TOKA C YYAaCTK3 HPOBOJIOKH M3
CBePXIPOBOAAINEr0 MarapHala, 3aKJII0YeHHOr0 B MefHy0 o6oxouky. Haxogurca naMeHenmne
TEMIEepaTyYPHOTrO NOJA CO BpeMEeHeM B MeZHOH 060JI0YKe NpH OTCYTCTBMK OXIAMICHHA
IKMJIKMM TejiMeM, B KOTODHIt IOrpy#eH cBepXmpoBoAHMK. Takum oGpasomM ompepmemsercA,
MOHMMAETCA JM TEMHEepPATYPA HA KOHIE YYaCTKA OTKJIIOYEHHOr0 CBEPXIPOBOXHMKA BHlIe
KpUTHYeCKO), 4TO BHBHIBAET YBEJIMYEHHE BTOI0 YYACTHA.

HccnenoBanoch Takike MIIEHOYHOE KAIEHME YKMIIKOTO TeJIUA C LENbI0 BHACHEHUSA CTENEHH
ero BIIMAHMA HA M3MEHEHHMEe TeMIIePATYPHOTO NoJA B cBepxnpoBogHuke. Teopus naenouHoro

KMIEeHNA MOoguPUIMPOBAHA A MPUMEHEHNA K APYTHM KULKOCTAM, KPOMe [eliMdA.



