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Abstract-Approximate methods are developed to calculate the rate of heat generation with respect to 
time when current is suddenly discharged from part of a superconducting wire embedded in a copper 
sheath. The temperature field in the copper with respect to time is then found in the absence of any cooling 
from liquid helium surrounding the superconducting composite. Thus it is determined if the tem~rature 
at the end of the section of superconductor, from which the current has been excluded, rises above a critical 
temperature which will cause the region to propagate. 

Unsteady-state film boiling of liquid helium is separately considered to determine if it can make a signifi- 
cant contribution to modifying the temperature field within the superconducting composite. The film 

boiling theory is put in a form readily applicable to liquids other than helium. 

NOMENCLATURE 

volume of copper per unit super- 
conductor surface area ; 
constant defined by equation (34); 
specific heat of helium vapour ; 
specific heat of helium vapour at 

Yo; 
specific heat of copper; 
functions of time defined by equa- 
tions (22-25); 
steady- and unsteady-state heat- 
transfer coefficients respectively ; 
magnetic flux ; 
current in superconductor ; 
current per unit perimeter of super- 
conductor ; 
current density; 
thermal conductivity of helium 
vapour ; 
thermal conductivity of helium 
vapour at y, ; 
half length of superconductor from 
which current is excluded ; 
latent heat of vaporization ; 

m, mass of copper per unit super- 
conductor surface area; 

4 S’ heat flux from surface adjacent to 
helium ; 

Q- heat; 
heat due to current exclusion - 

$ybl, heat release rate into coppe; per 
OR. Qs. unit surface area of superconductor 

r, 
ro. 
R, 
t, 
&R, hS? 

tRS, 

t “9 

due to current exclusion and during 
one-dimensional current diffusion. 
radial current diffusion and the 
steady state respectively; 
radial coordinate ; 
radius of superconductor wire; 

@fro) ; 
time ; 
time at which form of solution 
changes. Subscripts indicate direc- 
tion of change: 1 for one-dimen- 
sional current diffusion, R for radial 
current diffusion and S for steady 
state; 
time period of unsteady-state film 
boiling ; 
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T, 
T,. 

T,> 

u, 
u, 
X. 

Y, 
Yo, 

Z, 

ZIR, 

temperature ; 
temperature of helium liquid- 
vapour interface ; 
temperature of solid surface ad- 
jacent to helium; 
variable defined by equation (32); 
velocity ; 
linear coordinate ; 
variable defined by equation (42); 
value of y at helium liquid-vapour 
interface ; 
dimensionless time defined by equa- 
tion (33); 
z at t,,. 

Greek symbols 
thermal diffusivity of copper ; 
thermal diffusivity of the super- 
conductor ; 
helium vapour density; 
helium vapour density at y. ; 
helium liquid density ; 

U-IT,)“; 
temperature elevation ; 
electrical resistivity; 
time ; 
defined by equation (43) ; 
integrals defined by equations (29). 
(30). (3 I), (40). 

1. INTRODUCTION 

IT IS well known that the electrical charac- 
teristics of a single straight superconducting 
wire are more stable than one wound in a coil. 
The reasons need not concern this paper but 
the effect of instability is that magnetic flux is 
locally excluded from the wire, with a conse- 
quent generation of heat, which is sufficient 
to raise the temperature above a critical value 
at which the superconductor acquires an elec- 
trical resistance in the usual sense. The ohmic 
heating of the wire can then be sufficient to 
maintain the elevated temperature in competi- 
tion with cooling by boiling liquid helium at the 
wire surface and even to cause the region of 

normal resistance to propagate, (see for example 
Whetstone and Roos [l]). 

A practical method of maintaining the wire 
generally in a superconducting state to enable 
it to carry the very high currents of which it is 
theoretically capable is to embed the super- 
conducting wire in copper and so provide low 
resistance shunt. This method is known to work 
but upon close examination the reasons are 
not so clear. 

The diffusivity of current density normal to 
the direction of current flow is directly pro- 
portional to the electrical resistivity. Thus. 
since the resistivity of the superconductor abolve 
the critical temperature is large, the current is 
excluded from the superconductor in a negligibly 
small time-typically lOmE s. The current will, 
however, diffuse rather slowly through the 
copper, taking more like 10d3 s, and the ohmic 
resistance losses, before the copper shunt can 
take full effect, will be large. 

The magnitude of the current diffusivity in 
copper is 2.5 cm’/s while that for thermal 
diffusivity is 5000 cm*/s. Therefore any heat 
generated will spread rapidly over the copper 
cross-section which can be considered iso- 
thermal. The heat then has two paths to follow 
which are indicated in Fig. 1: 

(1) 

(2) 

It can pass from the copper into surrounding 
liquid helium or, 
Since the magnetic flux will have been 
excluded only from a certain length of 
superconductor, it can diffuse normal to 
the copper cross section to regions where 
the colder copper provides a heat sink. 

It becomes clear that the initial virtue of the 
copper will be to obtain rapid diffusion of heat 
and to provide a heat sink rather than to act 
as a low resistance shunt. It would be hoped 
to design the superconducting composite to 
prevent the ends of the length of superconductor 
which had reverted to the normal condition 
from rising above the critical transition tem- 
perature. Then the normal region will not 
propagate. 
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Hoot diffuser 

FIG. 1. Diagram describing the assumed model of events. 

The nature of heat transfer to the liquid 
helium will be unsteady-state film boiling. 
Nucleate boiling can be discounted in most 
practical cases where the helium is under 1 atm 
pressure at 4.2”K and the surface temperature 
of the copper will be close to and most likely 
above the critical temperature of 52°K. It 
will be shown that the unsteady state will last 
about lop3 s and so corresponds in magnitude 
with the current diffusion period within the 
copper. 

This preamble has indicated that the various 
unsteady-state processes are complicated and 
interlocking. Nonetheless it will be shown that 
a reasonably accurate assessment of events 
can be made by simple desk calculation if heat 
transfer to the helium is ignored. This will 
assign temperatures to the system and then the 
importance of the boiling process can be 
judged using a film boiling analysis. Results 
of greater accuracy would require numerical 
work by a computer. 

The model of events that is to be used for 
analytical purpose is implicit in the description 
given above and is illustrated in Fig. 1. The 
details of the model will appear in the assump- 
tions to be stated in the later sections. First 
expressions will be derived giving rates of heat 
released in the copper. Then expressions will 
be given describing the diffusion of the heat 
through the copper. Finally an unsteady-state 
film boiling theory will he developed. 

2. HEAT RELEASE RATE INTO COPPER 

2.1. Stored energy of magneticjlux 
The stored energy QLO per unit length of the 

cylindrical superconductor of radius r,, is 

QLO = 
*O H2r s +r 
0 

(1) 

where H, the magnetic flux. is 

H = 2mJ (2) 

where r is the radial co-ordinate, and J is the 
current density. Hence 

QLo = f. (3) 

I is the current in electromagnetic units of say 
g* cm+/s. 

2.2. Release of stored energy into copper 
The stored energy in the superconductor is 

usually a small part (about one fifth) of all the 
energy released in the unsteady-state current 
diffusion period. It also appears rather slowly 
in the copper due to the low thermal diffusivity 
of superconductor materials (about 5 cm’js 
compared with 5000 cm’/s for copper) of 
practical superconductors. Therefore the follow- 
ing assumptions can be made without materially 
affecting the calculated copper temperatures, 
which are the final result. 

It is assumed that the surface temperature 
of the superconductor is constant and that the 
temperature elevation /3 above the surface 
temperature is of the form 

where CI, is the thermal diffusivity of the super- 
conductor, r is time, R = (r/IO) and A is a 
constant. 

Substitution of equation (4) is the thermal 
diffusion equation 

38 1 ae ri ae 
aR"+K%i=ccaz s 

(5) 
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yields an ordinary differential equation in f 
and R with A as a parameter, which has a series 
solution forfin terms of R and A. The boundary 
conditions are then used to determine A = 5.8. 
Thus it is found that Qc, the rate of heat release 
into the copper per unit surface area of super- 
conductor is 

~~ = %QLOexp [- 71. (6) 

2.3. Heat release due to ohmic resistance in copper 
When the superconductor reverts to normal, it 

is assumed that the current enters the copper 
instantanously so that at first it is only present 
in a thin skin at the surface of the superconduc- 
tor. The initial ohmic resistance of the copper 
under this assumption will thus be infinite and 
there must be some current sharing but this is 
ignored. 

At first we can treat the current diffusion 
as one-dimensional, i.e. the problem is the 
same as for diffusion into a semi-infinite slab. 
At a later stage we can ignore the boundary 
formed by the surface of the superconductor and 
treat a problem in which all the current is 
assumed to originate at the axis of symmetry 
of an infinite solid. Further, for the purpose at 
hand, we can make a change from one solution 
to the other at the time where the rates of heat 
generation due to the two current distributions 
are equal. 

A time will also be reached when the heat 
generation rate from one or other of the above 
solutions equals the rate when the current is 
uniformly distributed. This time can be taken 
as the end of the unsteady-state current dif- 
fusion period. 

The equations of one-dimensional (x) and 
axisymmetrical diffusion of current density J 
are analogous to the thermal diffusion of current 
and are 

a2J 47r aJ 
-zzzz 
a2 C-j- P aT 

(7) 

a23 1 aJ 47~ 8J 
p+;s= - - 0 P aT 

(53) 

where P is the resistivity. 
Equations (7) and (8) are solved, with the 

boundary conditions noted above and the 
condition that the total quantity of current is 
constant, to give 

21, 
J = (pz)f exp (9) 

(10) 

where I, is the current per unit perimeter of the 
superconductor and is not to be confused with 
I in equation (3). 

The energy dissipation per unit volume is 
pJ2 and thus the heat release rates Q, for the 
onedimensional solution and QR for the axi- 
symmetric solution are given by 

also in the steady state we have 

Qs = gl; 

(11) 

(12) 

where a is the copper volume per unit surface 
area of superconductor. 

It is interesting to note that equation (12) is 
independent of the resistivity. 

The changeover time from one solution to 
another is given by the following equations with 
the obvious subscript notation 

71’ri 
t __ 
lR= 2P 

2a2 
t,s = - 

P 
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As an example consider p = 30 cm2/s, r. = Attention will be concentrated on the tem- 
0.03 cm and a = 0.15 cm. Then t,, = 4.5 10e4 s. perature at the end of the length 21 where 

3. LONGITUDINAL DIFFUSION OF d6 
(18) 

HEAT IN THE COPPER 
- = 3 erf [+(i _ 2)3. dT 

In this section the diffusion of heat in the Now equations (6), (1 l), (12) and (13) for the 
copper parallel to the axis of the superconductor heat release rate are of the form 
is to be studied. Several important assumptions 
are made. dQ = F(z) dz (19) 

(a) The system is isothermal normal to the and we have 
axis of the superconductor. 

(b) The length of the normal superconductor dT=dQ (20) 

is 21 and does not change. cdn 

(c) No heat is lost to the helium surrounding where cP is the specific heat of copper and m is 

the copper. the mass of copper per unit surface area of 

(d) The thermal properties of copper are superconductor. 
independent of temperature. Thus equation (18) can be integrated 

The last assumption is the most serious and 
is made so that the thermal diffusion equations 
become linear. Different temperature fields can 
thus be added to one another and desk computa- 
tions are possible. The limitations imposed by 
the assumption are indicated by the variation 
of thermal diffusivity of a typical copper from 
7000 to 3000 cm2/s as the temperature changes 
from 4.2”K to 7”K-a practical range for 
consideration. The variation is not so severe 
that the magnitudes of temperatures cannot be 
calculated using the simplifying assumption 
and, of course, the effect of the variation of 
thermal properties on the magnitudes can still 
be argued qualitatively. 

Consider the effect at time t of an increment 
of temperature dT added to the length 21 at 
the time z. Carslaw and Jaeger [2] give the 
increment of temperature d6’ at a position x 
measured along the length of the wire from the 
centre of the length of normal superconductor. 

de 
dT=- : erf 

[ 

(1 - 4 (1 f 4 
2[Ja(r - +I + erf 2[Jcr(t - z)] 1 

(17) 

for t 2 z where c( is the thermal diffusivity of 
copper. 

12 

1 e=-..- 
2c,m s F lxf [JaCi - z)] dr (21) 

fl 

where F for the various quantities of heat is 
given, using the usual subscripts, by the equa- 
tions 

F 
C 

= 2.9 xa& 
exp 

5.8 a,z 

[ 1 ---T-- (22) 

r. r. 

F, = 

xI2,r, 
FR = ~ 

z 

F 
s 

_ pIi 
a ’ 

(23) 

(25) 

Taking tr, the initial time, to be zero we can 
write, ignoring t3R for the time being 

ec = GW 

C 
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where 

i 

u exp[- B(Z~ - d)] erf i 
0 

du (29) Values of J vs. dimensionless time z are shown 
C 

i ss 1 = o J(z2u_ u2)erf 0 ; du 

where 

u J&r - 41 
1 

z - (Jut) 
1 

(30) 

(31) 

(32) 

(33) 

FIG. 2. Values of 
d 

(34) 

in Fig. 2 with B as a parameter. J is shown in 

Fig. 3 and it is seen that it tends’to 1.75. This 
provides an upper limit to the temperature in 
the unsteady-state period. 

FIG. 3. Values of 1 and 
1 5 

Figure 3 also shows the value of J and shows 

that it tends to become linear wit6 respect to 
z or that 8, tends to vary as the square root of 
time when the heat generation rate is constant 
in the steady state. Equation (31) has an analyti- 
cal solution 

J=erf[;+f]++exp [-$]-I (35) 

s 

from which we can find that 

(36) 

We can also find solutions to eauations (To) 
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and (30) as z tends to 
initial temperature rise 

(6, + e,),,, = x 
-I 

1.45 71 X + (J2ptq. (37) 
cdn [ 

zero and thus find the 

Equations (36) and (37) are valuable for 
comparing the initial rapid changes of tempera- 
ture with the final slower changes. 

3.1. Temperatures during the radial dijiision of 
current 

During the period when the current diffusion 
is approximated by the axisymmetric system 
we must find the temperature 

e,lb - ek + M:,, (38) 

where tlR is the time at which a change is made 
from the assumption of plane diffusion to that 
of radial diffusion. 

The first term of (38) has already been de- 
termined. The second term involves evaluating 
equation (30) between u = 0 and u = (Jz” - 
z$. Now (,/z’ - zfR) is usually small and thus 
erf (l/u) does not change very much. Therefore 
equation (30) can be evaluated in steps assuming 
an average value of erf (l/u) for each step. 
Usually only two steps and at the most three 
are needed for adequate accuracy. Equation 
(30), of course, has an analytical solution if 
erf (l/u) is set constant. 

A similar procedure is used for the third 
term of (38) where 

(39) 

du. (40) 

3.2. An example 
Figure 4 gives an example of the results of 

calculations using the methods given above. 
It shows the temperature in the copper at the 
end of the normal length of superconductor 
vs. the square root of time for the case where 

a = 5r,. The original current density in the 
superconductor for the example is 8GOO0 A/cm’, 
cP = 2.10e4 J/g”K, p = 30 cm2/s, a = 5000 
cm2/s y (copper density) = 8.5 g/cm3. The 
temperature rise due to 8, has not been added 
since it is small owing to the small value of 
~1, = 5 cm2/s. 

N 

P 

“8 
P 

4 

3 

2 

L 

0 0.01 0.02 0.03 004 005 

\lI 
2or, ~“2 /cm 

FIG. 4. Temperature elevation vs. time for a = 5r,, and 
without heat from current expulsion of helium cooling. 

Figure 4 shows that the temperature tends 
to reach a plateau but that the plateau gets 
eliminated as the length of the normal region 
increases. The shape of the curves in the steady- 
state region has been judged using equation 
(36) as a guide. 

4. UNSTEADY-STATE FILM BOILING 

Unsteady-state film boiling heat-transfer rates 
are to be calculated assuming that the solid 
surface has a constant temperature Ts and that 
the liquid is at its saturation temperature TO. 
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Thus we have a vapour film with a variable 
temperature gradient and for which we can 
write the one-dimensional thermal conduction 
and convection equation 

l3T dT WaT/W = o, 

cY,,+w&- ax (41) 

c, y and k are the specific heat, density and 
thermal conductivity of the vapour and are 
all temperature dependent. u is vapour velocity 
and x is distance from the wall. 

Hamill and Bankoff [3] obtained a solution 
to equation (41) assuming k was independent 
of temperature. Here we will use Hansen’s 
[4] transformation which avoids this assump- 
tion. 

(42) 

(43) 

where subscript 0 refers to properties at the 
temperature To. Thus equation (41) becomes 

(44) 

Equation (44) can be numerically integrated 
from Y,, the position of the liquid-vapour 
interface, given a starting value for (d4/dY). We 
use the condition that the rate of increase of the 
mass of vapour times the latent heat of vaporiza- 
tion L equals the heat conducted to the liquid- 
vapour interface and derive 

(45) 

Further we find the value of (d@/dy) at the 
solid surface to be 

($) = -$&j+ (46) 

where qs is the heat flux from the solid surface. 

Thus the numerical integration will give (d+/dy), 
and 4, and hence equations (46) and (43) will 
give the heat flux from the surface and the 
temperature difference between the surface and 
the vapourizing liquid. 

Equation (44) contains (ky/c) as an arbitrary 
function of 4. For many purposes and for the 
particular purpose at hand we can assume that 
c is independent of temperature and that 

(;) = (;), (;) = (;)‘. C4’) 

Then 

4 = $[(T/To)* - 11 = $I - 11 

in which g is defined. 
Equation (44) becomes 

d2v 
dY 

.o - 

b5 - 

I 
0 

5- 

4- 

3- 

2- 

I- 

O, 
I I I I I 
3 5 7 9 II 

(T*flol 

FIG. 5. Unsteady-state film boiling. 
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which has been integrated for the boundary The time period of the unsteady-state t, is 
conditions equal to the time at which h, = hs. It is seen 

Y = Yo, ‘lo = 1 and to be about lo- 3 s. 

dq _ 3 LY, C-J _ --- 
dY o 2 coTo ’ 

(50) 

The results are shown in Fig. 5 in terms of the 
dimensionless heat flux 

as a parameter. 

4.1. Application to helium at one atmosphere 
(L/c,T,) for helium at 1 atm is 0.965. The 

following table shows calculated unsteady-state 
heat-transfer coefficients. 

Table 1. Heat-transfer coeficients for helium at 4.2”K 

T, h,t+ h, L 

4.282 1.175 1o-2 6.16 10-l 3.63 lO-4 
4,536 5.888 1o-3 2.48 10-l 5.65 lO-4 
4.99 3.935 1o-3 144 10-l 7.45 lo-4 
5.70 2.957 lo-’ 9.82 lo-’ 9.05 1o-4 
6.73 2.380 lo- 3 7.27 lo-’ 1.07 lo-3 
8.25 1.994 10-S 5.85 lo-’ 1.16 lO-3 

10.49 1,711 10-a 4.75 lo-* 1.30 lo-3 
13.88 1,506 lO-3 4.05 lo-* 1.38 lO-3 
19.03 1.339 lo-3 3.54 lo-2 1.44 lo- 3 
27.30 1.203 lO-3 3.17 lo-2 1.45 lo-3 
65.86 9.857 lO-4 2.62 lo-’ 1.42 1O-3 

213.6 8.070 1O-4 2.25 lO-2 1.25 lo-’ 

T, = surface temperature [“K] 
h, = unsteady state coefficient [W/cm’“K] 
h, = steady state coefficient [W/cm2 “K] 
t = time [s] 
t, = period of time for unsteady state [s] 

The steady-state heat transfer-coefficient was 
calculated from the formula of Frederking. Wu 
and Clement [5] which tits available experi- 
mental information. 

[gke2y;L _ ,)I’ = of” ;;” ,?I+ (51) 

where vapour properties are those at the 
arithmetic mean film temperature, pL is the 
liquid density and g is the gravitational con- 
stant. 

4.2. Application to cooling of the superconductor 
composite 

It was stated in the introduction that the 
temperature field in the copper could not be 
calculated by simple means if boiling helium 
was included. This is partly because the copper 
temperature and thus the helium cooling varies 
with position along the composite as well as 
with time. No simple heat quantity, such as 
considered with respect to ohmic resistance 
heating, can be found which will give a tempera- 
ture field to be subtracted from those already 
calculated. 

Nonetheless the temperature elevations, such 
as shown in Fig. 4, can be used, in conjunction 
with the heat-transfer coefficients given in the 
table of the last section, to decide if the boiling 
heat-transfer process will remove a considerable 
or insignificant part of the heat generated in 
the superconductor composite. It is therefore 
possible to decide if the copper or the helium 
or both together should be considered as the 
immediate heat sink. In the long run of course 
the helium must remove all the heat. 

In the composites that the author has studied 
it appears that, for values of (21) of about five 
times the diameter of the composite, both the 
copper and the helium are valuable as sinks. 
The answer will vary, however, with the design 
of the coil. 

ACKNOWLEDGEMENT 
The work was carried out at the Central Electricity 

Research Laboratories and the paper is published by 
permission of the Central Electricity Generating Board. 

1. 

2. 

REFERENCES 

C. N. WHETSTONE and E. R. Roes, Thermal phase 
transitions in superconducting Nt&r alloys, J. Appl. 
Phys. 36, 783 (1965). 
H. S. CARSLAW and J. C. JAEGW, Conduction of Heat in 
Soliak, 2nd Edition, pp. 53-56. Clarendon Press, Oxford 
(1959). 



1064 G. C. GARDNER 

3. T. D. HAMILL and S. G. BANKOFF, Growth of a vapour 5. T. H. K. FREDERKING, Y. C. Wu and B. W. CLEMENT, 
film at a rapidly heated plane surface, Chem. Engng Sci. Effects of interfacial instability on film boiling of 
18, 355 (1963). saturated helium 1 above a horizontal surface, A.I.Ch.E. 

4. C. F. HANSEN, Effect of variable thermal properties on JI 12, 238 (1966). 
one-dimensional heat flow, Physics Fluids 8, 2288 (1965). 

R&nnC--On expose des mtthodes approchees pour calculer la vitesse de production de chaleur en 
fonction du temps lorsque le courant se d&charge brusquement d’une partie d’un fil supraconducteur 
enveloppe dans une game en cuivre. On obtient alors le champ de temperatures dans le cuivre en fonction 
du temps et en l’absence de refroidissement par de l’hthum liquid entourant l’ensemble supraconducteur. 
Ainsi, on.dCtermine si la temperature a I’extremitt de la section du supraconducteur. a partir duquel le 
courant a Ctt expulse augmente audessus d’une temperature critique qui provoquera la propagation 
de cette region. 

L’tbulltion par film de l’htlium liquide en regime instationnaire est conside& d’une faccon s&par&e 
pour determiner si cela peut contribuer sensiblement a la modification du champ de temperatures dans 
I’ensemble supraconducteur. La theorie de l’tbullition par film est mise sous une forme applicable 

directement a des liquides autres que l’htlium. 

Zwammenfaswng-Zur Berechnung der zeitabhangigen Wlrmeerzeugung wurden Nlherungsmethoden 
entwickelt fur den Fall, dass einem Teil eines supraleitenden Drahtes plotzlich Strom entzogen wird. 
Der Draht ist von einer Kupferhtille umgeben. Das Temperaturfeld im Kupfer l&sst sich ermitteln; es 
erfolgt dabei keine Kiihlung des supraleitenden Kiirpers durch fliissiges Helium. Damit wird bestimmt, 
ob die Temperatur am Ende des Bereiches, dem der Strom entzogen wurde tiber eine kritische Temperatur 
ansteigt, was eine Ausdehnung des Bereiches zur Folge hatte. 

In einer getrennten Betrachtung wurde gepriift, ob instationares Filmsieden eine deutliche Anderung 
das Temperaturfeldes im supraleitenden K&per bewirken kann. Die Theorie des Filmsiedens ist in eine 

Form gebracht, die eine Anwendung auf andere Fliissigkeiten. ausser Helium. zullsst. 

A~OT8qIi~-Pa8pa6OTaHbI npH6nHmemare MeTORbl paweTa H3MeHeHIIR CO BpeMeHeM 

CKOpOCTU TenJIOB~eJleHHfI npli MrHOBeHHOM OTKJIIOYeHIIM TOKa C ysaCTKa npOBOJIOKIl ki8 

CBepXnpOBOHRuerO MaTapEiaJIa, EIaKJII0YeHHOrO B MeAHyIO 060~1OqKy. HaxoaHTcfz HaMeHeHHe 

TemnepaTypHoro nOJlH CO BpeMeHeM B MeAIiOfi o6onosKe npn OTCyTCTBIlIl OXnamAeHufi 

WHJJKMM reJnieM, B KOTOpnti nOrpymeH CBepXnpOBOAHHK. TaKum o6paaoM OnpeflenReTcH, 

nO~HEIMaeTCH JlH TeMnepaTypa Ha KOHUe yYaCTKa OTKJllO4eHHOrO CBepXnpOBOAHHKa BbIIUe 

KpHTWieCKOtt, 9TO BbIablBaeT yBeJIHYeHne aTOr yVaCl'Ka. 

Bccne~oeanocb Taxme nneHorKoe KnrreHne mqKor0 renHn c qenbm k3blficHeH~n cTeneHtf 

ero BJIHRHU~~ HaHaMeHeHkie TeMIIepaTypHOrO nOnR B CBepXIIpOBORHHKe. Teopun nneHoYHOro 
winemn hiogm#mqHpoBaHa Am npmeHemrr H Apyrm w~~KOCT~SM, Kpome renw. 


